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A Clarification of Some Current Multiplicative Confusion Models 1

JAMES T. TOWNSEND

Department of Psychological Sciences, Purdue University, West Lafayette, Iftdiana 47907

Four recently proposed models of confusion are examined within a classification of major
types of multiplicative models. It is shown that all four are equivalent within a single
confusion matrix but are open to mutual testing across experiments producing two or
more confusion matrices. Generalization of these models is considered.

Consider the class of experimental situations where there are n possible stimulus
presentations and n possible responses and there is an expelimenter-defined one-one
stimulus-response mapping. Then a confusion matrix is a table with the following
properties: The stimuli are given row identification such that the cell entries are condi-
tional frequencies that the column response is made to the row stimulus.

More formally, {Cj;}represents a confusion matrix with positive entries in its cells
such that :L:=l Cj; = 1, for 1 ~ i ~ n, where i identifies the stimulus and the j the
response.

Confusion matrices are useful in the study of psychological similarity in perception
and cognition. Some examples are Miller and Nicely (1955), Luce (1963), Townsend
(1971), Geyer and DeWald (1973) and examples with special emphasis on application of
multiplicative confusion models are Falmagne (1972) and Wandmacher (1975). We will
consider here this special type of confusion matrix (designated multiplicative confusion
matrices). In these, Cufor i =1=j can be factored into an element that is a function of i and
one that is a function of j. Since certain degenerate conditions arise when n ~ 2 (see.
e.g., Falmagne, 1972), it will henceforth be assumed that n ~ 3.

Most contemporary mathematical models of confusion matrices, including non-
multiplicative models, can be captured by the following definition of confusion models.

DEFINITION1. Let 8 = {8j} be a set of n stimuli and R = {R;} be the set of n
corresponding responses, with n ~ 3. Then M = (A, B, C, F) is a confusion model
for the system (8, R) in case A and B are real-valued parameter spaces of dimension
mA and mB , respectively, i.e.,

1 William Batchelder and Joseph Kruskal provided helpful comments on an earlier version of
this paper. The present work represents an extension of results presented by the author at the
Eighth Mathematical Psychology Meetings, Lafayette, 1975. Part of the work on this project was
supported by NIH Grant No. 27041-01.
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for mA , mB positive integers; C is the set of all n X n row-stochastic (confusion) matrices,
and F is a function from A X B into C.

F expresses the confusion cell entries in terms of the parameters. The reason for the
two parameter spaces A and B is that it is often assumed that one set of parameters (A)
relates only to experimental stimulus factors while the other (B) relates only to experi-
mental response factors. For instance, the A parameters might be functions of stimulus
intensity or energy or pre- and poststimulus perceptual effects but J:he B parameters
might be functions of such experimental factors as relative payoff values or stimulus
presentation probabilities. Of course, in general, the parameter spaces might be functions
of yet other qualities but the stimulus vs. response factors play an important role in the
following development.

The nontrivial import of Definition. 1, when conjoined with the empirical inter-
pretation of A and B, is that not only can such a mathematical model typically be tested
against (fitted to) a particular empirical confusion matrix, but the stimuli (and related
factors such as intensity, etc.,) and responses (and related factors such as motivation or
bias conditions) can be alternatively varied. Experimental variations of stimulus factors
should produce variations only in parameters contained in A and experimental manipula-
tion of response-related factors( e.g., payoff conditions) should produce changes only in
the B-parameters. Thus, a model can often be tested across experiments by observing the
outcome of predicted parameter invariances or changes.

We; now want to specialize the theoretical scope to multiplicative confusion models.
There are several types of interest, which are convenient to group together in a single
definition.

DEFINITION2. Let M = (A, B, C,F) be a confusionmodel for a system of n stimuli
and responses. Then M is said to be multiplicative in case there are nonnegative functions
siCA X B) and r;(A X B), for 1 ~ i, j ~ n, such that for all i * j, [F(A X B)]i; ==

siCA X B) r;(A X B), i.e., the ijth term in the confusion matrix given by F(A X B) can
be expressed as a product of siC")and r;(-). A multiplicative confusion model is strong in
case Si and r; depend only on A and B, respectively. That is, a strong multiplicative
confusion model is characterized by

for alII ~ i =Fj ~ n. A multiplicative confusion model is restricted in case

n

siC") L rk(') < 1,
k=l

for 1 ~ i ~ n.
When a multiplicative model is not strong, then some Si or r; (or both) will be a function

of both A and B and such a multiplicative model will be called weak. When a model is
not restricted, then Si:L:=1 rk(I ~ i ~ n) is not constrained to be less than 1 although
it must be the case that Si :L:;&1rk ~ 1(1 ~ i ~ n) in order that the matrix be a confusion
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matrix as defined in Definition 1. Such a multiplicative model will be called general. It
turns out that the weak-strong and the general-restricted distinctions are important in
the model-equivalence relationships.

A multiplicative model will in general be characterized by its weak-strong and general-
restricted description. For instance SRMM will refer to the class of strong restricted
multiplicative models while WGMM will refer to the class of weak general multiplicative
models. Similarly these abbreviations are also used as adjectives, so a \YRMM is a weak
restricted multiplicative model. Finally, the designation CM and CM will be employed
to reference the full class of confusion models defined in Definition 1 and a member

of this class, respectively.
Now, when any two multiplicative confusion models M1 and M2 (with n ~ 3) predict

the same numerical (empirical) confusion matrix, those models are related by a positive
constant K, where SiM = KSiM and r;M = K-lr;M for 1 ~ i,j ~ n (e.g., see Falmagne1 2 1 2

1972, Theorem 3). However, the restriction in models SRMM and WRMM is a con-
straint on the space of confusion models, since multiplication of one Si and division of the
r; by K obviously cannot alter the relationship of Si to 2:;=1 rk (it cancels out). The
absolute size of Si is not affected by the restriction; rather it is the size of Si relative to the
sum of the r's that is important.

The usual notion of model equivalence prescribes that two models (Ml and M2) are
equivalent if and only if each implies the other (e.g., see Greeno and Steiner, 1968; or
Hurwicz, 1950). In the present investigation, whenever any confusion matrix predicted
by Ml (that is, any numerical realization produced by giving the parameters numerical
values) can be predicted by M2' without violation of the conditions or bounds on the
parameters of M2' M1 is said to imply M2. We will use the symbol "~" to stand for
implication in one direction and "<=?"will refer to implication in both directions, that is,
to model-equivalence.

, It can be seen that any restricted model ~ a general model since a general model can
immediately be constructed with s's and r's identical to those of the restricted model over
the appropriate range of A and B, but can also possess r's and s's not obeying the con-
straint. Clearly, a general model cannot ~ a restricted model.

Next, it is of interest here to consider the additional requirement that when the r's
or s's of Ml are functions of A or B only, as in the strong models in Definition 2, that the
r's and s's of M2 will also be functions only of A or B, respectively. Implication or
equivalence with this restriction included will be denoted "=?" and "~" respectively.
Thus, if Ml =?M2 (where both Ml and M2 are multiplicative) then both Ml and M2 are
strong or both weak and implication in the usual sense holds as well. If Ml ~ M2 then/

both are strong or both weak and they are additionally equivalent in the usual sense. It is
clear that the present notions of equivalence can be immediately extended to classes of
models so that, for example, SRMM =?WRMM and WGMM ~ CM, meaning that
for any SRMM there exists an implied WRMM and for any WGMM (indeed, any
multiplicative model whatever) there exists an implied CM.

Figure I summarizes these relations among the various classes of models. From the
fact that WRMM <=? SRMM, WGMM <=? SGMM, WRMM =? WGMM and SRMM =?

SGMM, we can conclude 'that WRMM ~ SGMM and SRMM ~ WGMM (the

- - --
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SGMM

CM = FULL CLASS OF CONFUSION MODELS

= CLASS OF WEAK GENERAL MULTIPLICATIVE MODELS

= CLASS OF STRONG GENERAL MULTIPLICATIVE MODELS

= CLASS OF WEAK RESTRICTED MULTIPLICATIVE MODELS

= CLASS OF STRONG RESTRICTED MULTIPLICATIVE MODELS

= MODEL IMPLICATION

WGMM

WRMM

SRMM

= MODEL IMPLICATION PLUS BOTH MODELS ARE WEAK OR
BOTH STRONG

FIG. 1. Summary of equivalence relations among the classes of multiplicative models and the
full class of confusion models.

diagonal in Fig. 1), but it is false that WRMM ~ SGMM or SRMM ~ WGMM since
the pairs differ on the strong-weak dimension.

The psychologically relevant empirical aspect of the strong vs. weak distinction is
that in the strong models, the experimenter can in principle manipulate only the experi-
mental bias factor (relative rewards on the various responses, etc.,) or only the sensory
factor (stimulus intensity, etc.,) in which case only the Siterms or the rj terms, respectively,
should change across the two conditions. For instance, high vs. low stimulus intensity
with bias constant should affect only the s's. The weak models in contrast predict that
both the r's and the s's should be affected by stimulus intensity level.

Obviously, the predictions of the confusion matrix cells are on the 'true score' level
and any particular experiment will result in empirical values that reflect one or more
sources of variance and thus will not precisely equal the 'true score' value. For instance,
suppose Cij , I ::::;; j ::::;;n are the 'true scores' of row iOthen clearly the distribution of the
cell frequencies in an experiment involving the presentation of Ni trials of stimulus i
will be multinomial. The empirical Cijwill be estimates, Ctj, of the true values. Similarly,
predicted changes brought about by varying A and B parameters will be subject to
statistical error.

The specific models on which we concentrate in this paper can now be presented in
terms of their parameter spaces A and B and mappings from the parameter vectors to
the confusion matrices included in C. Followinr their specification their equivalence
relations with one another and with the models of Definition 2 will be given.
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SOME CONTEMPORARY MULTIPLICATIVE MODELS

The following models possess nr's and ns's, but each model allows parameter values that
have the effect of multiplying the s's by K (>0) and dividing the r's by the same K, without
altering the confusion matrix values. There thus are only 2n - 1 parameters in any of
the models, since the r's can be standardized to sum to 1 by transforming the original
model with K = L~=1 rk . In the case of each specific model, the indeteiminacy involving
exact values of rand s can be translated into similar indeterminacies of the respective
parameters. Although all the present models have 2n - 1 degrees-of-freedom in an
algebraic sense, the restricted models and their equivalent counterparts constrain the
legitimate values of the parameters in A X B.

The All-or-None Model (AON)

The All-or-None Model has received the most attention of the multiplicative models,
in most part because of its clear connections with information processing notions of
confusion and the related fact that it represents a limiting case of processing confusion
models. The qualitative ideas behind the All-or-None Model are old, but recently it has
been treated more quantitatively. It was referred to by Broadbent (1967) as the Pure
Guessing Model and by Smith (1968) as the Pure Perceptibility Response Bias Model.
It was developed from sensory activation notions, called the All-or-None Model, and
compared with nonmultiplicative models in a 26-letter alphabetic confusion experiment
by Townsend (1968, 1971). The All-or-None Model was significantly inferior to the
more general models, which permitted the representation of stimulus similarity effects.
It is also conceptually related to the Simple Fast Guess Model (OIlman, 1966; Yellott,
1971; Falmagne, 1972).

It is defined by A X B, where A = (Pi) and B = (6i), I ~ i, j ~ n and the
A X B ~ C mapping given by

i =ftj,

1.=},

n
where 0 < Pi < 1, 0 < hi < 1, and Li=1 hi = 1.

The idea here is that the stimulus (Si, 1 ~ i ~ n) is perfectly recognized with
probability Pi (all information necessary for a correct response is processed) and hence
response Ri is made. But with probability 1 - Pi' none of the information helpful
toward making the correct response is processed and the observer must guess at random,
responding j with probability bj (1 ~ j ~ n). There are n free P's and n - 1 free b's.
It will be shown below that AON is a member of SRMM.

The rest of the models we consider bear close affinity with the Choice Model of
confusion (Luce, 1963), all the Ciiinvolving ratios of strengths of potential responses.

- -- ----
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The Broadbent Response Bias Model (BRB)

This model is similar in form to Luce's model for weight discrimination (1959, p. 31)
and was discussed by Broadbent in the context of word recognition (1967). Here, A =
<ai) and B = <Vj), 1 ~ i, j ~ n, and

Vj
a.V. + "n Vk

t t L-k¥'1

i =1=j,

- t =},

where it is supposed that 1 < ai < + 00 and 0 < Vj < + 00. The interpretation of
1 < ai is that the effect of presenting a stimulus tends to increase the strength of the

respective response (ai Vi > Vi)' The probability of Cij is then the ratio of the strength
of alternative j relative to the total sum of strengths applicable when stimulus Si is
presented. There are n free a's and n - 1 free V's since the latter can be normalized

to sum to 1 by dividing the numerator and denominator of Cij(i =1=j) by K = 2::=1 Vk.
It is an WRMM.

The Multiplicative Similarity Model (MSM)

This model was suggested by Smith ,(1968) in an investigation of the relationship of
Luce's Choice Model (1963) to the All-or-None Model. It is defined by A = <ai),
B = <Cj), and

aiajCj

:L;¥'i aiakck + Ci

i =1= j,

- Ci

2::#aiakck + Ci

t = J.

It derives from Luce's 1963 Choice-confusion model by assuming that the similarity
parameters 'rjij = ai . aj , that is, stimulus similarity can be decomposed into a product
of contributions from the two stimuli. Although the stipulation that 'rjii= 1 and 'rjij< 1,
i =1=j, (two objects cannot be more similar than an object is to itself) can be met by only
assuming that n - 1 of the n a-parameters have values less than or equal to 1, it seems
natural to assume 0 < ai < 1 for alII ~ i ~ n and we shall do so. The biases, the Cj,
have the same meaning as the f3j in the 1963 formulation, with 0 < Cj < + 00. There

are n free a's and n - 1 free c's in the usual formulation of the model, and we shall learn
that it is contained in the class WRMM.

The Simply Biased Choice Model (SBC)

Derived by Falmagne (1972), this model possesses parameter sets (gi) and (lj) where
the g's are to be interpreted as the total strength of the presented stimulus and the f's
are strengths of unpresented stimuli (1 ~ i, j ~ n). Although the g's must certainly

---
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contain some effect of the stimulus and the 1's some effect of response bias, it may be
open to speculation whether the g's should also reflect response bias (toward the correct
response). Since gi has not been written explicitly as a function of both stimulus and bias
factors (as contrasted with, say, CXiVias the strength of the presented stimulus in BRB),
we shall take the tack of assuming that A = <gi) and B = <Ii)' The appropriate
mapping to the confusion matrix is

where 0 < I; ,gi < + 00. We shall also assume that gi > Ii' that is the strength of the
ith alternative is greater when it has been presented than when it has not. There are n
free g's and n - I free1's, where (as with the V's in BRB and the c's in MSM) the 1's
can be normalized to add to I. As are the previous two models, SBC will be shown to be
a WRMM.

EQUIVALENCE RESULTS AND DISCUSSION (2)

Equivalence Relations

Figure 2 presents the equivalence and implication relations among the various models,
and shows the classes of models to which they belong (SRMM, WRMM, etc.,). The
'psychologically intuitive' models listed to the left at the bottom of Fig. 2 are those
defined in the preceding section. The general models on the right are formed by relaxation
of the parameter constraints in the original models. The models within a box in Fig. 2
are both model-equivalent and identical on the weak-strong dimension. Thus, the AON
model belongs to the class SRMM, ~ a generalizedversion of itself (AON'), and is <=>to
the other multiplicative models given in the previous section (BRB, MSM and SBC).

The relationships of Fig. 2 can be easily verified by reference to Table I, which gives
the equivalence mappings between the specific models, and by reference to Fig. I and
Definition 2. Table I gives the mappings as: (parameters of the model given by row)-+
(parameters of the model given by column) in the off-diagonal cells. The diagonal cells
of Table I show the kind of model each is and the mappings between the specific model
and the s's and r's of an appropriate multiplicative model of Definition 2.

It can thus be confirmed that all the present models presented previously meet the
restriction that SiL~=l rk < I and that for any set of s's and r's of the restricted type

2 Smith (1968) was responsible for giving the parameter mappings between AON and MSM
and Nakatani (1970) did the same for BRB and AON. The other mappings have not been previously
exhibited, nor has the weak vs. strong distinction been raised. The potential importance of bounds
on the s; relative to the rj (s; < (L~_l rk)-l, 1 < i, j < n) in testing multiplicative models has also
not been reported or dealt with earlier.

--

Cij = I;
Lilk + gi '

i =1=.},

- gi

Lilk + gi '
t =},



w
tV

TABLE 1

Equivalence Mapping among Multiplicative ModelsG,b
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· OI.iVi :Ek..i k
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Sir;
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AON BRB MSM SBC i
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AON E SRMM :-'
Pi + (1 - pi)bi

[ (1 - pi)bi f/2

Pi + (1 - pi)bi I-,!

OI.i =
at = Pi + (1 - pi)bi

gi = 0

Si = 1 - Pi
(1 - pi)bi 1 -Pi

AON
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fFJ
r; = b; V; = b; f; = b;

to':!
c; - Z

1 - P; '='

same as above
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g; = a;
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I
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a AON = All-or-None Model, BRB = Broadbent Response Bias Model, MSM = Multiplicative Similarity Model, SBC
Choice Model.

b For further explanation, refer to the text and Fig. 2.
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~
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~
BRB'~MSM'~SBC'

WGMM

~
BRB~ MSM ~SBC

WRMM

PARAMETER CONSTRAINTS

RESTRICTED . PSYCHOLOGICALLY
INTUITIVE MODELS

GENERAL MODELS

AON: I>Pj>O. l>bj>O

BRB: +CD>aj>l. +CD>Vj>O

MSM: I>Oj>O. +CD>Cj>O

SBC: +CD>gj>fj>O

AON': I>p.>-CD. l>b.>OI J

BRS': +CD>a.>O. +CD>V.>O
I J

MSM': +CD>O.>O. +CD>C.>O
I J

SSC': +CD>g.>O. +CD>f.>OI J

FIG. 2. Summary of relations of restricted and general multiplicative models with each other
and the major multiplicative classes.

of model, there is a version of AON, BRB, MSM, and SBC, respectively, which is

equivalent. Note that although BRB, MSM, and SBC can possess one or more Si > 1
for a given confusion matrix, this does not enlarge their scope over that of AON since
for any confusion matrix predicted by one of these, an identical one can be predicted
with other parameter values resulting in Si < 1foralII ~ i ~ n. In fact,it is interesting
that the same transformation resulting in :L:=1 rk = 1 for each of the models results in
Si < 1. This transformation is s/ = KSi and r/ = rilK, whereK = :L~=1rk, 1 ~ i ~ n,
and the s's and r's are written in terms of the parameters of the respective models as given
in Table 1. For BRB and SBC, this is the same transformation that normalizes the bias

parameters (K = :L:=1 Vk and K = :L:=lfk, respectively) but in MSM, K . :L:=1 akck'

As noted above, Fig. 2 also shows what happens when the parameter constraints of
the present psychological models are relaxed. The resulting general multiplicative models
are contained in WGMM or SGMM since the restriction Si :L~=1 rk < 1 is no longer in
force.3

3 There is a fairly unusual circumstance in which there may be an intuitive rationale for extending
the parameter spaces as is done in the general multiplicative models. In degraded displays (e.g.,
brief and noisly) it is possible that the percept of S; could be more similar to S; than to itself. For
instance, in an alphabetic confusion experiment, presentation of an. E may result in the percept
of F due to loss of the lower horizontal feature, whereas presentation of the F leads to something
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Table 2 exhibits an example numerical confusion matrix which cannot be predicted

by the restricted models. It was generated by setting SI = 1.26,S2 = 0.50, S3 = 0.40;
71 = 0.67,72 = 0.165,73 = 0.165. Obviously, SI2:;=1 7k = 1.26> 1 thus violatingthe
restriction of AON, BRB, MSM, and SBC. The generalized models can, of course,
predictthis matrix. Thus in BRB/, (Xl= (1- SI(72+ 73)]/SI71 = [1- 1.26(0.165+ 0.165)]/
(1.26 X 0.67) = 0.69 < 1, whichis not an acceptableparametervaluefor BRB,but is
for BRB/.

TABLE 2

Example of a Confusion Matrix not Predictable by
AON, BRB, MSM, or SBC

R

It should be mentioned that alternative interpretations exist of the bias parameters in
AON, the b/s, which transform that model into a WRMM. Wandmacher (1977) expresses
bi (in the present notation) as

(1 ~j~n),

where hk equals the subject's prior probability that stimulus S k will be presented and Vk

is a response strength parameter assumed to be independent of the a priori probability of

Sk (1 ~ k ~ n). If hi equals the a priori probability of Si and Vi = Vj for all i, then this
expression can be seen to be the a posteriori probability that stimulus Si was presented,
given one is in the no-information state. Here, because the b's are themselves functions
of the p's, A = (Pi), B = (hi' vi)' 1 ~ i,j ~ n, and Fij(A, B) = si(A) 7i(A, B) and the
model then belongs to WRMM. This interpretation will not be further considered here
but the reader may refer to Wandmacher (1977) for more detail.

like an I because of loss of its two horizontal features. In this instance presentation of the stimulus F
leads to a weaker response strength towards F than towards I and a weaker tendency to say "E"
when it is presented than to report an F. Here, the WGMM models BRB/, MSM' and SBC' (with
extended parameter values) might provide a more adequate account of the data than the restricted
models. However, AON' still has no intuitive justification because the concept of 'p' as representing
a probability is violated.

- -- - -

S 1 2 3

1 0.58 0.21 0.21

2 0.33 0.59 0.08

3 0.27 0.07 0.66
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Implications for Model Testing

The remainder of the paper is addressed to some points concerning the experimental
testing of the presently considered confusion models. We do not emphasize questions of
estimation and model fitting per se although maximum likelihood estimation is straight-
forward because of the assumed multiplicativity (Smith, 1968) and method-of-moment
estimates were given by Townsend (1971), and either of these is eaiily extended to the
other equivalent models via the mappings of Table 1. The present remarks will rather
be directed to interesting aspects of the models' structures.

Any multiplicative model can obviously be falsified in principle by a single (experi-
mentally derived) empirical confusion matrix. For instance, the off-diagonal cells should
evidence row X column independence as tested by an appropriate X2test of independence.
On the other hand, any pair of models associated by model equivalence ( <=> or ~ ) cannot
be tested against one another by a single empirical confusion matrix. If an empirical
matrix turns out to be multiplicative with Si2::=1 rk < 1 then the restricted class of
models is supported, of which all the present 'psychologically intuitive' restricted models
are members. But, if Si2::=1 rk > 1 then that class is tentatively falsified with respect
to the general class of models (assuming of course adequate data, estimation, and
statistical tests).

The strong vs. weak issue cannot be tested with a single empirical matrix, but can be
tested across experimental conditions. In fact, it is important to note that when the
sensory and bias conditions are varied across experimental conditions, even models
within the same strong vs. weak as well as restricted vs. general class can be tested against
one another. As an example, suppose two values of stimulus intensity were employed,
while response factors were held unchanged, thus yielding two empirical confusion
matrices. Assume that the postulate (following Definition 1) that this sensory manipula-
tion affects only the parameter set A is correct. Suppose further that the results suggested
multiplicativity (Si X R; off-diagonal entries were independent within each single matrix)
but that examination of the matrices across alterations of the stimulus intensity factor
showed that both the s's as well as the r's were changing as a function of this factor.
Assume finally that estimates of the s's and r's supported Si < 2::=1 rk for 1 ~ i ~ n.
Then the investigator should look at models contained in WRMM for candidates for
the 'true' model. The specific models of the present investigation meeting these terms
are BRB, MSM, and SBC. AON is ruled out because it predicts that only the s's should
change with stimulus intensity and the general models need not be considered since the
restriction of SRMM and WRMM is not violated. Finally, since the three candidates
(BRB, MSM, SBC) differ according to the ways in which the Si depend on (A, B), the
correct model should evidence alterations primarily in the estimates of A whereas the
incorrect models should tend to yield alterations both in B as well as A.

Method-of-moment estimates of the AON parameters were given in Townsend (1971).
These basically involved finding inverse mappings carrying the Ci;back to the (presumed)
parameters. The estimates depend only on multiplicativity and not on whether the
models are general or restricted. For example, suppose n = 3 and the r's are taken to
satisfy 2:~=1rk = 1 (from the above development, we know this involves no loss of

-- --
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,
generality). Then using the bias estimates from Townsend (1971), it follows that (for
instance)'2 = 1/(1+ C13/C12 + C31/C32)and then, from C12= S1r2' an estimate of S1 is
$1 = (I + C13/C12+ C3l/C32)C12'Clearly, S1is not constrained to be less than I and when
$1 > I, evidencewill tend to accrueagainstthe restrictedmodels.Employmentof these
estimators with the example of Table 2 above, results in retrieval of the 'general' param-
eters; in particular $1 = 1.26.

In a preliminary search for multiplicativity, the investigator may check for certain
nonparametric relations (not all of which may be initially independent). Some of these
are obvious, such as the predicted constancy of Cik/Cjkover k and of CiilCikover i, and
CijCjkCki/CikCkjCji= I (I ~ i,j, k ~ n; and i =1=j =1=k). Others can be found by noting that
several functions of the empirical confusion matrix entries should yield the same values
of a particular s or r, if the appropriate model is multiplicative. Thus,

...

$1 ~ (I + C12/C12 + C31/C32)C12

~ (I + C12/C13+ C21/C23)C13

~ I - {Cu- (1 - cu)[I/(c23/C21+ C32/C31)]

- c12[1 + C13/C12+ C31/C32] - c13[1 + C12/C13+ C21/C23] + 2}t ,

where the last expression comes from Townsend (1971) and the first two follow im-
mediately from multiplicativity and estimates of the biases. The point is that these three
different right-hand sides of the equation, or estimators of S1, should all be approximately
equal if the data can be explained by a multiplicative model. To be sure, no precise
statistical tests based on these equalities have yet been devised. {t would probably be
wise to combine inspection of the nonparametric relations with more traditional, but
sometimes less informative analyses of the matrix structure (e.g., STEPIT).

It may finally be observed that at this time the only available multiplicative models
that seem generally intuitively reasonable are of the restricted type (WRMM or SRMM).
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